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Internet Traffic Growth Rate
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Exponential traffic growth
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Project Goals

The INTERNET project seeks to develop

- New and disruptive energy efficient network
architectures which are optimised for sustainable
energy requirements, and are validated using national
and pan-European and international models,

- New protocols and communications technigques to
support adaption within such a system, and

- Novel hardware with low energy production and
operating requirements.

EPSRC funded, £5.9m, 2010-2015.
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End-to-end network
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Energy Efficient Caching for IPTV On-Demn Services

___;u
Ty I_Jl.—;_
._I:' I
o
e
try
y
L}
L=
]
5
£
i P
oo
oo
B e
=
& (0 (K0
% dieldiallans

IF layer

Optical layet

Ciptical switch 4

By 2015 over 91% of the global IP traffic is projected to be a form of video
(IPTV, VoD, P2P), with an annual growth in VoD traffic of 33%.

In proxy-based architectures, proxies (or caches) are located closer to
clients to cache some of the server’s content.

Our goal is to minimize the power consumption of the network by storing
the optimum number of the most popular content at the nodes’ caches.



Cache Size Optimization
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The power consumption of the network falls with the increase in the cache
size to a certain cache size after which increasing the cache size results in
increasing the total energy consumption.

In this range, the energy consumed for storage exceeds the energy
consumed if some of the requests are served remotely.



Cache size optimization
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Time of Day

Fixed optimum cache is found considering all the nodes over the full day

Fixed size caching reduces the network energy consumption by a

maximum of 19% (average of 8%) and a maximum of 38% (average of
30%) for (Rd=1.5, Ru=0.2) and (Rd=7.5,Ru=1), respectively.



ptimum cache size at different nodes during the
day (need cache size adaptation (sleep))
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Energy-Efficient BitTorrent
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- The two content distribution schemes, Client/Server (C/S) and Peer-to-Peer
(P2P), account for a high percentage of the Internet traffic.

- We investigate the energy consumption of BitTorrent in IP over WDM networks.

- We show, by mathematical modelling (MILP) and simulation, that peers’ co-
location awareness, known as locality, can help reduce BitTorrent’s cross traffic
a_rgjd consequently reduces the power consumption of BitTorrent on the network
side.



Energy-Efficient BitTorrent

The file is divided into small pieces.
A tracker monitors the group of users currently downloading.

Downloader groups are referred to as swarms and their members as peers. Peers are
divided into seeders and leechers.

As a leecher finishes downloading a piece, it selects a fixed number (typically 4) of
interested leechers to upload the piece to, ie unchoke, (The choke algorithm).

Tit-for-Tat (TFT) ensures fairness by not allowing peers to download more than they upload.

We consider 160,000 groups of downloaders distributed randomly over the NSFNET
network nodes.

Each group consists of 100 members.
File size of 3GB.
Homogeneous system where all the peers have the same upload capacity of 1Mbps.

Optimal Local Rarest First pieces dissemination where Leechers select the least replicated
piece in the network to download first.

BitTorrent traffic is 50% of total traffic.
Flash crowd where the majority of leechers arrive soon after a popular content is shared.

We compare BitTorrent to a C/S model with 5 data centers optimally located at nodes 3, 5,
8, 10 and 12 in NSFNET.

The upload capacity and download demands are the same for BitTorrent and C/S
scenarios (16Tbps).



Peer Selection
(100 Peer: 30 Seeders and 70 Leechers in Swarm 1)

Original BitTorrent (Random Selection)

Energy Efficient BitTorrent (Optimized Selection)




Results

Energy Consumption
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MILP average Energy Saving=36%
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DEER: Distributed Energy Efficient Resources

We develop a MILP model for cloud content delivery in IP/AWDM networks
to answer whether centralised or distributed content delivery is the most
energy efficient solution. Two kinds of decision variables are optimized for

the cloud service model: /\

 External decision variables: |
* Number of clouds Z o= N
* Location of clouds " 47

o
* Internal decision variables: 2/ ﬁ‘\‘ﬁ
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Scenarios

Forcing Single Cloud:
No Power Management (SNPM)
Using Power Management (SPM)

Forcing Max Number of Clouds (14):
Full Replication (MFR)
No Replication (MNR)
Popularity Based Replication (MPR)

Optimal Number of Clouds:
Full Replication (OFR)

No Replication (ONR)
Popularity Based Replication (OPR)

With Power Management



Popularity Based Content Replication (OPR)
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Energy Efficient Storage as a Service (StaaS)

Scenario & Assumptions

Special case of the content delivery service where only the owner or a very
limited number of authorised users have the right to access the stored
content.

All content is stored in one (or more) central locations

StaaS should achieve trade-off between serving content owners directly
from the central cloud/clouds and having clouds near to content owners.

Upon registration for StaaS, users are granted a certain size of free
storage. DropBox, for instance, grants its users 2GB.

Different users might have different levels of utilization of their StaaS
facility.

Different users have different documents access frequency.

High access frequency means:

» The content owner accesses the content frequently
and/or

« QOther authorised users become interested in the content.



Energy Efficient Storage as a Service (StaaS)

Scenario & Assumptions
« Two Average document sizes are evaluated, 45MB and 22.5MB

* Number of users evaluated are 1.2M

» Users are uniformly distributed in the network.

« Users download rate (Drate: in Gb/s) depends on:
* Document access frequency (Freq: Number of downloads per hour)
* Document size (Dsize: in Gb)

Drate = 2+ Freq- Dsize/3600

The factor of 2 is to take the fact that users usually re-upload their
content after downloading it back to their StaaS drive into account.



« Optimal Clouds: The model selects to serve
users at each node either from the central
cloud or from a local cloud by migrating
content from the central cloud.

* 14 Clouds: Users at each node are served by
a local cloud.

StaaS Model Results

Single Cloud: Users are served by the central e segen o
cloud only.
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Virtual Machine (VM) Placement for Energy Efficiency

Assumptions

Number of users fluctuates between 200k and 1200k users per day.
Users rate 5 Mb/s,
Users are uniformly distributed among network nodes.

1000 Virtual machines are evaluated due to MILP restriction on number of
variables

The problem is defined as finding the optimal location of each virtual machine

Scenarios

« VM Migration: Only one copy of each VM is allowed in the network

* VM Replication: More than one copy of each VM is allowed in the network

but each copy uses full VM power

VM Slicing: VMs can be divided into smaller slices to serve a smaller number

of users. Sum of slices power equal VM power. We enforce a limit on the
minimum size of the VM CPU utilization



Virtual Machine (VM) Placement for Energy Efficiency

We develop an MILP model to optimize cloud VM service delivery in IP/
WDM networks. Two kinds of decision variables are optimized for the
cloud service model:
« External decision variables:
 Number of clouds
* Location of clouds
* Internal decision variables:
 Number of servers
 Number of switches
*  Number of routers &

Scenario Total Savings Network Saving

The saving are

Migrate 5% 23.5% compared to
Replicate 6% 26% single cloud at

: node 6
Slice 27.5 86%




DEER-VM Heuristic
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Future Directions

Optimisation of wired wireless access architectures,
metro rings - wireless mesh, PON, RoF.

- Architectures that support photonic switching instead of

electronic routing.

Auction based and self-organising dynamic architectures
for energy minimisation.

Study optimum caching location in an end-to-end network

Develop the optimisation and simulation tools so that
address energy efficiency specifically.
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